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Abstract

Numerical weather prediction models as well as the atmosphere itself can be viewed as nonlinear dynamical systems in
which the evolution depends sensitively on the initial conditions. The fact that estimates of the current state are inaccurate
and that numerical models have inadequacies, leads to forecast errors that grow with increasing forecast lead time. The
growth of errors depends on the flow itself. Ensemble forecasting aims at quantifying this flow-dependent forecast
uncertainty.

The sources of uncertainty in weather forecasting are discussed. Then, an overview is given on evaluating probabilistic
forecasts and their usefulness compared with single forecasts. Thereafter, the representation of uncertainties in ensemble
forecasts is reviewed with an emphasis on the initial condition perturbations. The review is complemented by a detailed
description of the methodology to generate initial condition perturbations of the Ensemble Prediction System (EPS) of
the European Centre for Medium-Range Weather Forecasts (ECMWF). These perturbations are based on the leading part
of the singular value decomposition of the operator describing the linearised dynamics over a finite time interval. The per-
turbations are flow-dependent as the linearisation is performed with respect to a solution of the nonlinear forecast model.

The extent to which the current ECMWF ensemble prediction system is capable of predicting flow-dependent variations
in uncertainty is assessed for the large-scale flow in mid-latitudes.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical weather prediction is, by its very nature, a discipline that has to deal with uncertainties. The ini-
tial conditions of a numerical weather prediction model can be estimated only within a certain accuracy. Dur-
ing a forecast some of these initial errors can amplify and result in significant forecast errors. Moreover, the
representation of the dynamics and physics of the atmosphere by numerical algorithms introduces further
uncertainties associated for instance with truncation errors, with uncertainty of parameters describing sub-
grid-scale processes such as cumulus convection in a global model. We will refer to these two kinds of errors
as initial condition errors and model errors, respectively. For the prediction of the real atmosphere, these two
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kinds of errors are not really separable because the estimation of the initial conditions involves a forecast
model and thus initial condition errors are affected by model errors.

Over the past 15 years, ensemble forecasting became established in numerical weather prediction centres as
a response to the limitations imposed by the inherent uncertainties in the prediction process. The ultimate goal
of ensemble forecasting is to predict quantitatively the probability density of the state of the atmosphere at a
future time. This is a nontrivial task because the actual uncertainty depends on the flow itself and thus varies
from day to day. For many users of forecast information, an estimate of the future probability density of a
weather-related variable may contain useful information beyond that contained in a single forecast started
from the best available estimate of the initial state. There will be useful information in the probability density
as long as the distribution differs from the empirical distribution of this variable obtained from past data; the
latter distribution is usually referred to as the climatological distribution.

The first theoretical studies on error growth in atmospheric predictions, on the implied limits of prediction
and on probabilistic predictions appeared in the late 1950s to early 1970s. This area of meteorological research
is referred to as predictability. The pioneering works of Thompson, Lorenz, Epstein and Leith were central to
the emergence of predictability research and ensemble forecasting. The roots of ensemble forecasting are ana-
lysed in depth in [1]. Readers are referred to this review article for more historical details and references relat-
ing to the early research on predictability.

There is growing interest in quantifying uncertainty in many areas of scientific computing [2]. Techniques
for uncertainty quantification developed in other disciplines, e.g. oceanography [3], could prove or are already
useful in the context of numerical weather prediction and vice versa. In a nutshell, methods for uncertainty
quantification relevant for numerical weather prediction need to cope with the sensitive dependence on initial
conditions, the interaction of many spatial and temporal scales, and they should account for the fact that the
sources of uncertainty are themselves fairly uncertain.

Numerical weather prediction models use a spatial discretisation to represent the partial differential equa-
tions that govern the dynamics of the atmosphere as a system of N ordinary differential equations. Now, we
consider the fact that the initial state x 2 RN is uncertain but can be described by a probability density func-
tion p.d.f. p(x). Then, the evolution of the p.d.f. p under the dynamics of the forecast model is described by
Liouville’s equation. This is a linear partial differential equation defined on a subset of RN . Its numerical solu-
tion is impractical even for dimensions N as low as 100. Yet, current numerical weather prediction models
have phase spaces of dimension N � 106 – 108. For such high-dimensional models, even the much simpler
problem of merely evolving the covariances of the p.d.f. under the linearised dynamics poses a major chal-
lenge. Such a covariance evolution is required in the extended Kalman filter [4], an optimal state estimation
algorithm in the limit of linear dynamics. In passing, we note that ensemble forecasting and state estimation,
usually referred to as data assimilation in the meteorological context, are closely connected as both require the
prediction of uncertainty estimates. The only difference is the time range at which these uncertainty estimates
are required. Research in data assimilation is devoted to finding approximations of the extended Kalman filter
that avoid the explicit evolution of the full covariance matrix. For instance, the state estimate of weak-con-
straint four-dimensional variational data assimilation is known to approximate that of a Kalman filter in
the limit of a long assimilation time window [5].

The only feasible technique to obtain estimates of the nonlinearly evolved p.d.f. are Monte-Carlo tech-
niques that sample the p.d.f. at initial time and evolve the sampled initial states with the forecast model—
or a perturbed version of the forecast model to account for model uncertainty. The sample is usually referred
to as ensemble and individual elements as ensemble members. This approach was envisaged already in the
1960s by Lorenz [1]. In conventional Monte-Carlo approaches, the sampled p.d.f. is known precisely. This
is different for the weather prediction problem. The initial p.d.f. itself is uncertain because the estimates of
errors determining the initial p.d.f. are uncertain and because the computation of the full p.d.f. for a high-
dimensional system can only be achieved using approximations.

This article attempts to give an overview on ensemble forecasting with a particular focus on the Ensemble
Prediction System (EPS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). It is
impossible to discuss all aspects of ensemble forecasting in depth in this review article. A broader picture
of current research on the predictability of weather and climate can be obtained from the contributions in
a recently published book [6].
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This paper is organised as follows. Section 2 discusses sources of uncertainty in numerical weather predic-
tion, the prediction of a p.d.f. and the evaluation of probabilistic predictions, and the value of ensemble fore-
casts in comparison to single forecasts. In Section 3, we discuss numerical model configurations for ensemble
prediction including that of the ECMWF EPS. In Section 4, an overview is given on various methods to rep-
resent initial uncertainty, a subsection describes the initial perturbation methodology of the ECMWF EPS in
detail. The representation of model uncertainty in ensemble forecasting is discussed in Section 5 followed by
conclusions in Section 6.

2. Uncertainties in weather prediction

2.1. Sources of uncertainty

This section discusses initial condition errors and errors arising from uncertainties associated with the rep-
resentation of the atmospheric dynamics by numerical algorithms as sources of forecast uncertainty. Although
this distinction is useful to structure the story of predictability, we stress once more that initial condition error
is inseparable from model error for a real physical system like the atmosphere.

Let us focus on initial condition uncertainties first. The initial conditions for any numerical weather fore-
cast can only be estimated within a certain accuracy. Data assimilation techniques need to account for the
uncertainties in the estimation process and can provide estimates of the uncertainty of the initial conditions.
Lorenz [7] studied the growth of forecast errors due to initial condition errors by looking at the rate at which
solutions of the ECMWF numerical weather prediction model diverged. He looked at forecasts that are
started at subsequent days. If one assumes that initial condition errors have similar statistics as the difference
of the 1-day forecast started at day D � 1 and the initial condition at day D, one can estimate the growth of
forecast errors solely due to initial condition errors by looking at the divergence of the two forecasts. Fig. 1
illustrates this divergence of two solutions for a particular case. The depicted variable is the geopotential of the
500 hPa pressure surface. In meteorology, geopotential refers to the gravitational potential for unit mass with
respect to the mean sea level. If the dependence of gravity on altitude is ignored, the geopotential is propor-
tional to the height above mean sea level. The geopotential has generally high values at low latitudes and low
values at high latitudes. This variable is often used to depict the flow on the larger spatial scales in the extra-
tropics. To first order the wind is parallel to the isolines of the geopotential and the wind speed is proportional
to its gradient (a relationship referred to as geostrophic balance). The integrations are performed with the
ECMWF Integrated Forecasting System (IFS) at the resolution of the currently operational EPS (about
50 km in the horizontal and 62 levels in the vertical). The forecast in the left column starts from the estimate
of the initial conditions for 15 February 2006, 00 UTC whereas the forecast in the right column starts from the
initial condition estimate obtained 12 h earlier. Panels in the same row show the atmospheric state for the
same date and time. There are only minor differences apparent between the 0-h and 12-h forecasts (upper pan-
els). However after 7.0/7.5 days, significant differences have developed in the two forecasts while there are still
regions in which the forecasts agree qualitatively (middle panels). Still further into the forecast after 14.0/14.5
days, the two forecasts barely resemble each other except for the average poleward gradient of geopotential
that would be expected from the climatological average(bottom panels).

Statistics accumulated over longer periods confirms that this divergence of solutions from slightly different
initial conditions is not atypical [7]. Fig. 2 shows the RMS difference of pairs of lagged forecasts valid at the
same time for 500 hPa geopotential (north of 20�N). The statistics are based on a sample of 180 cases from
December 2005 to February 2006. The initial doubling rate of the differences is of the order of 2 days. After
about 20 days, the growth of the differences has nearly saturated. On average the 20-day forecast and the 20.5-
day forecast will be almost as different as two states of the atmosphere that would have been picked randomly
from the climatological distribution of atmospheric states.

The above results illustrate the large sensitivity to initial conditions of a particular numerical weather pre-
diction model. But similar results are obtained with any numerical weather prediction model. The high sensi-
tivity of future states to the initial conditions has also been found in more idealised models of the large-scale
atmospheric dynamics. In [8] the authors numerically computed the spectrum of Lyapunov exponents for a
model of the general circulation of the atmosphere with 1449 variables. They estimated about 100 positive
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 (a) 15 February 2006, 00 UTC +0 h
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 (f) 14 February 2006, 12 UTC +348 h

Fig. 1. Geopotential of the 500 hPa pressure surface (contours every 800 m2 s�2) for two forecasts started 12 h apart: 15 February 2006, 00
UTC for (a, c and e) and 14 February 12 UTC for (b, d and f). The forecast steps are 0.0 and 0.5 days in (a) and (b); 7.0 and 7.5 days in (c)
and (d); 14.0 and 14.5 days in (e) and (f). Polar stereographic map of the Northern Hemisphere.
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Lyapunov exponents. Lorenz first realised that forced dissipative systems of ordinary differential equations that
originate from highly truncated models of fluid flows systematically exhibit sensitive dependence to initial con-
ditions [9–11].

An estimate of the actual RMS error of the 500 hPa geopotential forecast is included in Fig. 2. If the RMS
difference of lagged forecasts is taken as an estimate of forecast errors due to initial conditions, the difference



Fig. 2. Five hundred hectopascal geopotential height RMS error (heavy line) of the unperturbed control forecast of the ECMWF EPS and
RMS difference of two subsequent (12-h lag) control forecasts valid at the same time (thin line). RMS values have been computed for the
Northern Hemisphere (north of 20�N) for the period December 2005–February 2006 using data from the new high-resolution EPS
(truncation at wavenumber 399, 62 levels in the vertical) which became operational in Feb’06.

M. Leutbecher, T.N. Palmer / Journal of Computational Physics 227 (2008) 3515–3539 3519
between the two curves can be attributed to the forecast errors arising from model error [7]. According to this
diagnostic, a large fraction of the forecast error appears to be caused by the growth of initial condition errors
through the dynamics of the forecast model. While this diagnostic gives a first estimate of the relative contri-
butions of initial condition errors and model errors to the forecast error, it is unknown whether the results
depend sensitively on the fact that the ‘‘initial errors’’ are represented by forecast-minus-initial condition dif-
ferences, which may have different characteristics than the unknown actual initial errors.

Since the first successful numerical weather predictions in the 1950s [12], significant advances have been
made in the accuracy of numerical weather prediction models. To some extent, these advances have been dri-
ven by the steady increase in high-performance computing resources which has permitted the increase in the
spatial resolution of numerical weather prediction models over the years. Thereby, more and more scales of
motion can be resolved. Further advances can be expected with even higher resolutions as the atmosphere
exhibits still significant variability on the spatial scales of todays models’ truncation limits (discussed elsewhere
in this issue). The accuracy of the numerical weather prediction models has also benefitted significantly from
improvements in the way physical processes and motions on the subgrid-scale are represented as well as
improvements in the representation of the interaction with the ocean and the land surface. ([13] and other con-
tributions in this issue).

Although the accuracy of numerical weather prediction models has increased and is still increasing, model
errors are expected to continue to make an important contribution to forecast errors because of the entangle-
ment of initial condition errors and model errors. In numerical weather prediction, initial conditions at a time
t* are estimated by blending information from observations within a certain time window around t* with that
from the most recent forecast for the time t*. Thereby, information from all past observations is evolved in
time. It is obvious that the accuracy of the initial conditions can be improved by using a more accurate numer-
ical weather prediction model in this estimation process. This dependency of the initial condition error on the
model error implies that the relative contributions of initial condition error and model error to the forecast
error need not change so much even if significantly more accurate numerical weather prediction models
become available.

The atmosphere exhibits variability on spatial scales smaller than and near to the truncation limit. Further-
more, truncation errors due to the spatial discretisations of the partial differential equations tend to be largest
on the spatial scales close to the truncation limit. These two factors inevitably lead to significant uncertainty
on the near grid-scale. Although this model error contribution is largest on small scales it can affect the errors
on scales of mid-latitude high and low pressure systems within a few days. Work on optimal perturbations
(singular vectors) shows that the atmospheric dynamics exhibits a preferential growth of perturbation energy
to larger spatial scales [14].
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The relative contributions of model error and initial condition error to forecast errors are not well known
for the weather prediction problem. These can only be known precisely in idealised work in which the system
itself is a numerical model. The three major operational ensemble prediction systems exhibit a lack of spread
after a forecast-range of about 5 days [15]. A possible explanation for this lack of spread may be that in all
three systems the growth of forecast errors due to model errors is not represented adequately.

2.2. Predicting uncertainty

Methods for representing the sources of uncertainty in ensemble prediction systems will be discussed in Sec-
tions 4 and 5. Now, we describe properties of a skilful ensemble prediction system and ways of measuring the
‘‘skill’’ of an ensemble prediction system.

The ensemble mean is a forecast with generally lower RMS error than that of an unperturbed forecast
because the unpredictable scales of motion have been filtered in the ensemble mean and only the signal of
the predictable scales remains [16]. With increasing forecast range, the ensemble mean gradually converges
to the climatological mean state. A single forecast that has higher spatial resolution than the ensemble fore-
casts tends to be more skilful than the ensemble mean initially. The forecast range at which the ensemble mean
outperforms such a higher resolution single forecast depends, inter alia, on the predictability of the variable
that is being considered [17].

The skill of the ensemble mean forecast is a measure that quantifies an aspect of the skill of an ensemble
prediction system. However, it does not assess the uncertainty information contained in ensembles directly.
Various other metrics are in use which assess the probabilistic information contained in ensemble forecasts.
For this paper, we select a few of these metrics, see e.g. [18] for a more comprehensive overview and further
references. A variety of metrics is used because they emphasise different aspects of probabilistic forecasts. Con-
ceptually, one can distinguish two aspects that determine the skill and usefulness of probabilistic forecasts:
The statistical consistency of the predicted probabilities and the width of the predicted distribution. These
two aspects are referred to as reliability and resolution [19].

Let us consider a particular weather event, say whether it will rain more than 1 mm within the next 5 days in
London. A probabilistic prediction of this event is said to be reliable if the relative frequency of the event tends
to p for a large number of dates for which it was predicted to occur with probability p for any p 2 [0,1]. More
generally, one can formulate a stricter requirement for the reliability of a probabilistic forecast of a scalar var-
iable x: for cases in which the cumulative distribution P(x) is predicted, the sample distribution of the true
state of the atmosphere should tend to P(x) in the limit of many cases. We will call such an ensemble perfectly

reliable. This definition only makes sense for an ensemble with an infinite number of members. Real ensembles
with a finite number of members cannot be perfectly reliable due to sampling uncertainty [20]. Statistical con-
sistency can be expressed in the following form for finite size ensembles: All ensemble members and the true
state of x are independent draws from the same distribution P(x). This will be referred to as a perfect ensem-
ble. A sample of n realisations from the climate distribution will constitute a perfect ensemble. In the limit of
an infinite number of ensemble members the perfect ensemble will be perfectly reliable. The reliability of an
ensemble can be improved through calibration based on statistics of past ensemble forecasts for the same sea-
son and region [21,22].

Reliable probability forecasts with a narrow distribution will be more useful than reliable probability pre-
dictions with a broad distribution. This aspect is referred to as resolution because a narrow predicted distri-
bution will better resolve whether or not an event is likely to occur than a broad distribution. However, even a
broad distribution which deviates somehow from the climatological distribution contains predictive informa-
tion that can be useful to some forecast users.

An example of a metric to assess the quality of probabilistic forecasts for a scalar variable that measures
both reliability and resolution is the continuous ranked probability score [23]. It is defined as the mean squared
error of the predicted cumulative distribution
CRPS ¼ 1

M

XM

j¼1

Z þ1

�1
½P jðxÞ � Hðx� xojÞ�

2 dx; ð1Þ
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where Pj, H, xoj denote the predicted cumulative distribution for case j, the Heaviside step function, and the
observed value, respectively. For a deterministic forecast that predicts the value xfj, i.e. Pj(x) = H(x � xfj), the
CRPS is equivalent to the mean absolute error. The CRPS is related to the Brier score which is a measure used
to evaluate dichotomous events (occurred/not occurred) defined as
B ¼ 1

M

XM

j¼1

ðpj � ojÞ2; ð2Þ
where p is the predicted probability for the event to occur in the jth case and oj is 1 if the event occurred and 0
otherwise. The CRPS can be expressed as the integral

R
dn of the Brier score for the event not to exceed the

value n.
Statistical consistency implies a relationship of the expected variance of the ensemble mean error and the

dispersion of the ensemble. Let us consider a perfect ensemble and a sample of M independent cases, e.g. dif-
ferent dates. In the jth case, the true state xT,j and the N ensemble members x1,j, . . . ,xN,j are independent draws
from the p.d.f. pj, which has mean lj and standard deviation rj. Further, let h�iN � 1

N

PN
k¼1 denote the expec-

tation computed from the sample of ensemble members, e.g. we write hx:;jiN � 1
N

PN
k¼1xk;j for the ensemble

mean. The dispersion of the ensemble is quantified by
s2
j ¼ hðx:;j � hx:;jiN Þ

2iN ð3Þ
and the ensemble mean error by
�2
j ¼ ðxT ;j � hx:;jiN Þ

2
: ð4Þ
We refer to s and � as RMS spread and RMS error, respectively. Following the standard derivation for an
unbiased variance estimate from a sample, we obtain
1

M

XM

j¼1

s2
j �

N � 1

N
r2

j

� �
! 0; for M !1; ð5Þ
where convergence is in the probability sense; the term converges to zero almost surely, i.e. with probability
one. The ensemble mean RMS error satisfies
1

M

XM

j¼1

�2
j �

N þ 1

N
r2

j

� �
! 0; for M !1: ð6Þ
The factors N�1
N and Nþ1

N that account for the finite ensemble size appear in (5) and (6) because spread and error
refer to the sample mean Æx.,jæN rather than the distribution mean lj. Combining (5) and (6) yields
1

M

XM

j¼1

�2
j �

N þ 1

N � 1
s2

j

� �
! 0; for M !1: ð7Þ
This implies that in a perfect ensemble the average ensemble mean RMS error tends with increasing sample
size M to the RMS spread times a correction factor close to 1 that accounts for the finite size N of the ensem-
ble. The relationship between spread and error is of particular interest if the spread varies because a perfect
ensemble will satisfy (7) not only in an average sense over the entire sample of cases but also for sufficiently
large subsamples which are conditioned on the predicted spread. This implies that the spread in a perfect
ensemble will predict the standard deviation of the ensemble mean forecast error distribution. Obviously,
the variability of the spread has to be larger than that expected by pure sampling uncertainty for this predic-
tion to be useful.

Statistical methods can provide probabilistic forecasts without the need for ensemble forecasts. The clima-
tological distribution has been mentioned previously; another example is a single deterministic forecast turned
into a probabilistic forecast by dressing it with a distribution of past forecast errors valid for the same region,
season and forecast range. However, such simple statistical methods will always yield the same spread. Some
flow-dependence could be introduced in the error statistics by stratifying the sample according to the predicted
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atmospheric state but sample size is likely to be a major issue with this approach. In contrast, ensembles con-
sisting of multiple integrations of numerical weather prediction models do exhibit temporal and spatial vari-
ations of the spread because the conditions of the flow itself modulate the dispersion of nearby atmospheric
states. The realism of the spread will depend on how well the sources of uncertainty are represented in the
ensemble prediction system. An example of the variability of the ensemble spread is given in (Fig. 3). It shows
two consecutive ensemble forecasts of hurricane Katrina’s track. Katrina, made landfall near New Orleans on
29 August, 2005, 12 UTC. The ensemble forecast issued on 26 August, 00 UTC exhibit a large dispersion of
tracks. This dispersion is substantially reduced in the ensemble forecast initialised at 12 UTC on 26 August.
The actual track of Katrina was close to the mode of the distribution predicted by the later forecast.

Even for a perfect ensemble, one cannot expect a very high correlation between the ensemble mean error
and the spread if the correlation is computed from pairs of error and spread for individual cases because one
essentially compares the standard deviation of a distribution with the magnitude of individual realisations.
The correlation of spread and ensemble mean error for a perfect ensemble increases with the case-to-case var-
iability of the spread [24]. It is more appropriate to assess the validity of (7) by considering the sample mean
RMS errors conditioned on the predicted spread. Such a diagnostic was performed previously for the
ECMWF EPS [25]. It is repeated here using data from a more recent version of the operational ECMWF
EPS. The data consists of 89 ensemble forecasts (February–April 2006) for 500 hPa geopotential height in
the Northern Hemisphere mid-latitudes (35–65�N). As the true state of the atmosphere is unavailable, the
ensemble mean error is estimated from analyses, i.e. estimates of the initial state obtained with ECMWF’s
four-dimensional variational assimilation system. For the considered variable and forecast ranges this is con-
sidered to be an acceptable approximation. The data is analysed on a regular 2.5� · 2.5� latitude–longitude
grid—2160 grid points in total. Thus the entire sample consists of 192,240 pairs of spread and ensemble mean
error. The data has been stratified according to the predicted spread and divided into 20 equally populated
bins, where bin boundaries are given by the 5%-, 10%, . . . , 95%-percentiles of the spread distribution. Then,
the RMS error of the ensemble mean and the RMS spread are computed for each bin. Fig. 4 shows the rela-
tionship between error and spread for the 2-day, 5-day and 10-day forecast. At all three forecast ranges, the
ensemble spread contains useful information about variations of the width of the distribution of the ensemble
mean error. The larger the spread of the ensemble the larger is the average ensemble mean RMS error. At the
later forecast ranges (5–10 days), the average RMS error is fairly accurately predicted by the ensemble stan-
dard deviations. At the shorter forecast ranges (2-days), the spread is less reliable in predicting the variability
of the width of the ensemble mean error distribution. For cases with large (small) ensemble spread, the average
RMS error is systematically lower (higher) than the spread.
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35˚N

40˚N
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Fig. 3. Five-day track forecasts for hurricane Katrina made with the ECMWF deterministic forecast system (heavy line) and the ECMWF
ensemble prediction system (thin lines). Forecasts initialised on 26 August, 2005, 00 UTC (a) and 12 UTC (b). (a) t = 48 h; (b) t = 120 h
and (c) t = 240 h.
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M. Leutbecher, T.N. Palmer / Journal of Computational Physics 227 (2008) 3515–3539 3523
The comparison shown in Fig. 4 does not distinguish between temporal variations of the spread and spatial
variations. Some of the skill in predicting variations of the width of the forecast error distribution can arise
from correctly predicting the seasonally averaged geographic variations. We consider now the geopotential
normalised by the time-average RMS spread as new variable in order to focus on the aspect of the temporal
variability only. By definition, the time-averaged spread of the normalised geopotential is geographically uni-
form. The relationship between spread and average RMS error for the normalised geopotential is shown in
Fig. 5. The normalisation reduces the range over which error and spread vary. For instance, the ratio of
RMS error in the bin with largest 5% spread to the RMS error in the bin with lowest 5% spread is about
4.5 without normalisation at day 5; this is reduced to about 2.7 with normalisation. With increasing forecast
range, the distribution of the predicted spread narrows. Eventually, as the ensemble converges to the clima-
tological distribution, the spread will be almost constant except for sampling uncertainty and moderate
intra-seasonal variations. Fig. 5 demonstrates that the EPS is indeed providing information about flow-depen-
dent variations of the width of the ensemble mean error distribution. At the same time, the diagram reveals
systematic errors of the flow-dependent error bars predicted by the ensemble. Both calibration as well as
improvements of the initial uncertainty representation and model uncertainty representation are expected
to lead to significant further improvements of the statistical consistency and thus increase the capability to
predict flow-dependent variations of forecast uncertainty.

2.3. The value of ensemble forecasts

Ultimately, the value of a probabilistic ensemble forecast system is as a tool for decision making. A key
question is whether an ensemble forecast system has greater value in this respect than a best-guess determin-
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Fig. 5. As previous figure but for 500 hPa geopotential normalised by the seasonally averaged spread in order to geographically
homogenise the data.
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Fig. 6. Potential economic value for the ECMWF EPS (solid) and control forecast (dashed) based on 6-day forecasts of whether or not it
will rain (24-h precipitation exceeding 1 mm, August–October 2005, Europe).
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istic forecast. The cost/loss model [26,27] is relevant in this respect. We imagine a user who is sensitive to a
weather event E, in the sense that (s)he will incur a loss L if the event occurs and no protective action is taken.
Protective action can be taken at cost C, which we will assume to be less than L. Fig. 6 shows the so-called
potential economic value (PEV) of the ECMWF Ensemble Prediction System and associated best-guess deter-
ministic forecast (EPS control) for the event E: 24-h accumulated precipitation exceeding 1 mm, over all grid
points in Europe, for the period August–October 2005. A PEV of unity indicates a perfect deterministic fore-
cast, a PEV of zero indicates that the value of the forecast system is no better than a decision system based on
knowing the climatological frequency fclim(E) of E – in this latter situation, the optimal decision strategy will
be to always take protective action if fclim(E) > C/L and to never take protective action if fclim(E) < C/L.

It can be seen that the value of the EPS is substantially greater than the value of the control over most of the
range of cost/loss values. Indeed, for users with either low C/L or high C/L, the control itself has no value for
decision making over and above decisions made with knowledge of the climatological frequency of rain. This
can be understood qualitatively as follows. For small C/L it is clearly worth taking protective action even if
there is only a small forecast probability of E. By contrast, for large C/L it is only worth taking protective
action if it is almost certain that E will occur. More generally [27], for a reliable probabilistic forecast system
and for a particular C/L the optimal decision strategy will be to take protective action if the forecast proba-
bility of E exceeds C/L. A best-guess deterministic forecast system either predicts E or does not predict E. Its
value is therefore sub-optimal for such decision making. Although, the value of the control forecast is lower
than that of the ensemble for all C/L, a superior probabilistic forecast can be obtained by optimally combining
the EPS with a single high resolution deterministic forecast [17].

Not all decisions are binary decisions. An example of how an ensemble forecast system has greater eco-
nomic value than a best-guess deterministic forecast system is provided by Weather Roulette [28]. Here the
methodology is based on an analysis made by spreading financial stakes across a range of forecast outcomes,
in proportion to the probability of that outcome. A more general assessment of the economic value of ensem-
ble forecast systems is discussed in [29].

3. Numerical model configurations for ensemble prediction

3.1. Overview

Ensemble forecasts consist of multiple integrations of numerical weather prediction models. Now, we will
discuss suitable configurations of NWP models for ensemble prediction—methods for representing the uncer-
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tainties will be discussed in subsequent sections. The amount of available computing resources puts a con-
straint on how many ensemble members can be produced, on how fine the spatial and temporal discretisation
of the partial differential equations can be and on how far into the future the model can be integrated. Various
ensemble prediction systems have emerged within the past 15 years that range from climatic predictions that
span several decades to short-range weather prediction up to a few days. Accordingly, the horizontal resolu-
tion of the numerical models ranges from a few hundred kilometres for the former to the order of 10 km for
the latter. The number of different forecasts in an ensemble tends to be of the order of 10–100 for operational
weather prediction systems. Small spatial scales tend to be predictable for shorter time scales than the larger
spatial scales [30]. This may be used as argument for using coarser spatial resolutions for the longer forecast
ranges. Atmospheric predictions for time scales from the order of weeks onwards are affected by the uncer-
tainty of the evolution of the state of the ocean. Therefore, coupled ocean–atmosphere models are employed
for longer-range predictions [31]. Ensembles of regional models that have integration domains for a limited
area require that the uncertainty on the lateral boundaries is represented. Ensembles of coarser resolution glo-
bal model integrations are used to provide dynamically consistent perturbed lateral boundary conditions for
regional model ensembles, e.g. [32].

In the following, we focus on ECMWF’s medium-range EPS (up to 10 days at the time of writing and 15
days when this article appears). ECMWF also produces forecasts with two lower resolution ensembles for
monthly and seasonal predictions. The latter two ensembles are coupled to an ocean model and account also
for the uncertainty in the ocean.

3.2. The ECMWF medium-range EPS

The numerical weather prediction model used for all forecasts is a two-time-level semi-Lagrangian global
spectral model [33]. The semi-Lagrangian scheme uses a Stable Extrapolation Two-Time-Level Scheme
(SETTLS) and a finite element scheme for the vertical discretisation [34,35]. The atmospheric model is coupled
to an ocean wave model [13] and to a land-surface model and comprises a comprehensive set of parameteri-
sations for physical processes such as radiative transfer and moist processes. The initial state of the atmo-
sphere is estimated with a four-dimensional variational assimilation system. The current horizontal
resolution of the assimilation system and deterministic forecasting system corresponds to 25 km. In the ver-
tical, the atmosphere is discretised in 91 layers from the surface to 1 Pa. Some of the recent changes of the
assimilation and forecasting system which have lead to improvements in forecast skill over the past years
are described in [36].

The EPS model is triangularly truncated at a spherical harmonics total wavenumber 399 which is equivalent
to a horizontal resolution of about 50 km. In the vertical, the atmosphere is discretised into 62 layers between
the surface and the 5 hPa level (about 35 km altitude). The integration time-step is 1800 s. The ensemble con-
sists of 50 perturbed forecasts and one unperturbed forecast. Ensemble forecasts are generated twice daily for
00 UTC and 12 UTC.

3.3. Discussion

The model used for the first operational ensemble prediction system at ECMWF had a resolution a spectral
truncation at total wavenumber 63. Since the resolution has been increased in several steps up to the present
truncation at total wavenumber 399. Each of these resolution increases brought significant improvements in
the skill of the probabilistic forecasts [37,38]. In the future, the different ensemble systems at ECMWF will be
joined into a single seamless system. This is referred to as variable resolution EPS (VAREPS, [39]).

4. Representation of initial uncertainty

4.1. Overview

Several different techniques have become established for representing initial uncertainty in ensemble
weather forecasting. This diversity arises from our limited quantitative knowledge about the relevant sources
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of uncertainty and the difficulty of conducting fair comparisons of the different techniques using the same
numerical model and real observational data. Although we discuss the representation of initial uncertainty
and model uncertainty separately; they have to be evaluated jointly because model uncertainty contributes
to the initial condition uncertainty. The best technique for representing initial uncertainty is not independent
of the nature of the model error and the way it is represented in the ensemble prediction system. Conceptually,
one can distinguish between techniques that aim at obtaining a sample from the p.d.f. of initial states and tech-
niques that selectively sample initial uncertainty only in those directions of the three that are dynamically the
most important for determining the ensemble dispersion.

Techniques in the first group employ ensemble-based data assimilation techniques to get a sample of initial
states. The ensemble of the Canadian Meteorological Service is based on initial conditions from an ensemble
Kalman filter in which assimilated observations are perturbed by pseudo-random numbers. The added noise
represents observational error [40,41]. This approach can be viewed as a feasible approximation of the
extended Kalman filter [42]. Square root filters are another ensemble-based technique which aims at approx-
imating the extended Kalman filter [43]. The latter filters generate perturbations about the ensemble mean
through a deterministic algorithm. An ensemble of analysis perturbations is generated from an ensemble of
forecast perturbations through a linear transformation such that ensemble-based covariances satisfy the Kal-
man filter covariance update equation. The ensemble transform Kalman filter [44] is a particular square root
filter. It is computationally very efficient but does not permit localisation of the ensemble-based covariances.
Localisation of covariance estimates is used to filter out spurious long-range correlations which arise from
sampling uncertainty. Therefore, it is only suitable for generating the perturbations and not an initial state
estimate. The ensemble of the UK Meteorological Office uses the ensemble transform Kalman filter to gener-
ate the initial perturbations.

Techniques in the second group aim at sampling the dynamically most relevant aspects of the initial uncer-
tainties. The initial perturbations are dynamically constrained. The technique that is used at the US National
Center for Environmental Prediction (NCEP) and several other centres is based on so-called bred vectors
[45,46]. A bred vector is obtained through the following procedure. A random perturbation is added to an
initial state; then, the perturbed and unperturbed states are evolved with the nonlinear forecast model for a
period of time (of the order of 6–24 h); the finite difference of the evolved states is rescaled so that its amplitude
matches that of typical analyses error. Next, the new perturbation is added to a new state estimate and the
procedure is repeated. The bred vector is the perturbation that emerges after several growth and rescaling
steps. The rescaling of the finite difference represents the effect of data assimilation on initial uncertainty in
an approximate manner. It adjusts the amplitude of the perturbation, but it does not represent the scale depen-
dent filtering properties of data assimilation algorithms which tend to have a whitening effect on the distribu-
tion of errors, i.e. large-spatial-scale errors are better constrained than small-scale errors [47]. Initial
perturbations for several ensemble members are obtained by using several independent bred vector computa-
tions that start from different random perturbations in the first cycle. The ensemble transform Kalman filter
technique can be viewed as a refined breeding method—the rescaling is replaced by a linear transformation.
The ensemble transform Kalman filter technique has been compared with the bred vector method at NCEP for
a 10-member ensemble [48]. The study suggests that an ensemble size of 10 members is too small for the
ensemble transform Kalman filter to adequately represent inhomogeneities in the global observing network.
Recently, NCEP has increased the ensemble size to 14 members (four times daily) and replaced the breeding
by an Ensemble Transform Technique with rescaling [49]. This method is related to the ensemble transform
Kalman filter technique.

The technique that is used to perturb the initial conditions in the ECMWF ensemble prediction system is
based on the leading singular vectors of the operator that describes linear perturbation dynamics over a finite
time interval, say 2 days. The singular vectors maximise perturbation growth over this time interval. The tech-
nique is described in detail in Section 4.2. In a sense that will be described formally later, the leading singular
vectors identify those directions of initial uncertainty that are responsible for the largest forecast uncertainty at
the end of the specified time interval. Due to this property, they provide a convenient way of generating an
ensemble with sufficient dispersion in the most uncertain directions.

In an ideal world, where all sources of uncertainty are precisely known, ensemble-based assimilation tech-
niques can provide a means of obtaining at least approximately a sample of the actual p.d.f. of initial uncer-
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tainty. Idealised studies have compared techniques that aim to sample the actual p.d.f. of initial uncertainty
with the bred vector and singular vector approaches in the absence of model error, e.g.[50,51]. In such studies,
observations are generated from a numerical model integration and the same model is used as forecast model.
In [50], the authors using a model of the large-scale, quasi-geostrophic dynamics conclude that a perturbed
observation ensemble, an ensemble using singular vectors and an ensemble using bred vectors yield equally
skilful ensemble mean forecasts. The authors in [51] also used a model of the large-scale, quasi-geostrophic
dynamics in the extra-tropics. They conclude that techniques sampling the p.d.f. of initial uncertainty
improves the statistical consistency of the ensemble forecast compared to the dynamically constrained tech-
niques. The differences are largest in the early part of the forecast and become fairly marginal around day
5. A study with the 3-variable dynamical system introduced by Lorenz (1963) also concludes that dynamically
constrained ensembles are not justified if the p.d.f. of initial uncertainty is available [52].

In the real world, all sources of uncertainty will never be quantified precisely due to the large recurrence
time of the atmosphere and the limited spatio-temporal coverage of observational data. The contribution
of a source of uncertainty to forecast uncertainty depends not only on the typical magnitude of the errors
but also on their spatial and temporal correlations. For instance, some observation types which are used
for estimating the initial atmospheric state are known to have spatially correlated errors. For satellite radi-
ances, such correlations are likely to be significant but quantitative estimates are not yet available. Quantita-
tive estimates of observation error correlations have been obtained for indirect wind observations obtained
from feature tracking in satellite imagery (atmospheric motion vectors, [53]). This study diagnoses statistically
significant correlations at distances of up to about 800 km in the extra-tropics; correlations reach the value 0.2
at distances of about 200–300 km. By and large, spatial and temporal correlations of observation errors are
not yet represented in current data assimilation algorithms and this has a potentially degrading effect on
the initial state estimate [54]. Observation error correlations will also lead to incorrect estimates of the initial
state uncertainty if the correlations are not accounted for in the data assimilation schemes.

The representation of model error within ensemble-based assimilation techniques constitutes another major
challenge. It is necessary to represent model error in ensemble-based data assimilation to obtain reliable uncer-
tainty estimates [41]. Idealised experiments with models of different spatial resolutions suggest that the accu-
racy of ensemble data assimilation techniques is sensitive to the the specification of the spatial correlations of
the model error term [55]. Studies with low-dimensional dynamical systems and with numerical weather pre-
diction models also emphasise the sensitivity of ensemble dispersion to the specification of the temporal cor-
relations of the model error term [56,57]. Present knowledge about the spatio-temporal correlations of the
model error of numerical weather prediction models is rather limited.

The accurate estimation of the p.d.f. of initial uncertainties will require the accurate specification of the
important sources of uncertainty. This is conceived as a major challenge for both data assimilation and
ensemble prediction. In [15], the authors compare the performance of three global ensemble prediction sys-
tems (Canada, NCEP, ECMWF) but are unable to conclude whether sampling of the initial p.d.f. is superior
to the dynamically constrained perturbations because the three ensemble prediction systems use different
numerical models and initial conditions of different quality. The singular vector approach that will be
described next is an attempt to circumvent the difficulties of obtaining samples of the actual p.d.f. of initial
uncertainty.

4.2. Singular vector based initial perturbations

4.2.1. The linear regime and the tangent-linear approximation
The evolution of small amplitude perturbations of a particular solution of a numerical weather prediction

model can be approximately described by solving the set of linear equations that is obtained by a first order
Taylor expansion of the nonlinear model about the particular solution. In the following, we assume that the
partial differential equations that govern the dynamics of the atmosphere have been spatially discretised and
can be written as a system of N ordinary differential equations.
d

dt
x ¼ F ðxÞ: ð8Þ



3528 M. Leutbecher, T.N. Palmer / Journal of Computational Physics 227 (2008) 3515–3539
Here, x 2 X � RN and F : X! RN . The function F is nonlinear and might even be not continuous. The lack of
regularity arises from parameterisations of subgrid-scale physical processes that depend in a discontinuous
way on the state x. For what follows, we assume that a reasonable approximation to F exists which is conti-
nously differentiable. A significant amount of work has gone into developing differentiable approximations of
F, see e.g. [58–60].

Now, let xr(t) denote a particular solution of (8); it will be referred to as the reference trajectory. The
dynamics of infinitesimally small perturbations x 2 RN about the reference trajectory xr is described to first
order in x by the tangent-linear system
d

dt
x ¼ AðxrðtÞÞx; ð9Þ
where Ajk = oFj/oxk(x) denotes the Jacobi matrix of F. For any solution x of (9), xr + �x approximates a solu-
tion of (8) starting at xr(t0) + �x(t0) to first order in �. Let us denote by M(t0, t) the solution operator of (9), i.e.
for any x0 2 RN ; t 7! Mðt0; tÞx0 is a solution of (9) and M(t0, t0)x = x. The operator M is referred to as tan-
gent-linear propagator or simply propagator in the following.

Let us now consider how a Gaussian distribution of initial states evolves under the dynamics of (8). The
Gaussian distribution will remain close to a Gaussian up to some future time t0 + s if the initial distribution
is sufficiently narrow. Its evolution can be approximated by the tangent-linear system (9) assuming that the
mean of the Gaussian at t0 is identical or close to the initial value of the reference trajectory xr(t0). Within
this linear approximation, the evolution of the covariances C(t) of the distribution is governed by
CðtÞ ¼Mðt0; tÞCðt0ÞMðt0; tÞT; ð10Þ

where superscript T denotes matrix transpose. This regime is referred to as the linear regime. For numerical
weather prediction on large horizontal scales (hundreds of km), the linear regime lasts about 1–2 days for ini-
tial perturbations with a magnitude corresponding to typical initial condition errors [61–63]. The dimension of
the state vector of numerical weather prediction models is so large (�105–108) that the full covariance matrix is
too large to be stored, let alone be evolved using (10). However, it is possible to compute those directions at t0

that evolve into the leading eigenvectors of C(t0 + s). We will see that these are singular vectors of the prop-
agator M(t0, t0 + s) if suitable normalisations are used.

For a realistic numerical weather prediction model, it is computationally not feasible to obtain the propa-
gator M(t0, t1) in matrix form. Instead, algorithmic differentiation is used. From the numerical algorithm that
describes the nonlinear model F, the numerical algorithm is derived that describes the perturbation dynamics
to first order in perturbation amplitude. The new algorithm is referred to as the tangent-linear model. It has
two input variables: the starting value for the nonlinear forecast xr(t0) and the perturbation at initial time x(t0).
An integration of the tangent-linear model to time t1 provides then x(t1) = M(t0, t1)x(t0). In a further step, the
algorithm representing x̂ðt1Þ ! x̂ðt0Þ ¼Mðt0; t1ÞTx̂ðt1Þ can be derived from the tangent-linear model. This
algorithm is referred to as the adjoint model, which is short for adjoint of the tangent-linear model [61,64].
The input variables for the adjoint model are the initial value of the trajectory xr(t0) and the adjoint pertur-
bation at final time x̂ðt1Þ.

The development of variational data assimilation techniques provided a significant incentive to invest in the
development of tangent-linear and adjoint models of numerical weather prediction models. Once tangent-lin-
ear and adjoint models are available, the leading singular vectors can be computed via an iterative solution of
an eigenvalue problem (see Section 4.2.3).

4.2.2. Singular value decomposition of the propagator

The definition of singular vectors involves weighted L2-norms to measure perturbation amplitude at initial
time t0 and final time t1. Let us denote these norms by i ii and i if, respectively. The initial metric carries the
information about the distribution of initial errors [65]. Let C0 denote an estimate of the initial error covari-
ance. It can be assumed that C0 is a positive definite matrix. Otherwise, one can restrict the problem to the
subspace in which C0 is positive definite. Then, we consider the initial norm given by the Mahanalobis distance
kxk2
i ¼ xTC�1

0 x: ð11Þ
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For a Gaussian distribution with zero mean and covariance C0, perturbations with equal initial norm (11) are
equally likely to occur.

The final time norm is a convenient measure of forecast error. It provides a normalisation so that errors of
different variables like temperature and wind can be compared. The final time norm can be either a norm or a
semi-norm. One can introduce projections in state space in order to focus on certain regions of the atmosphere
or certain variables. We denote the final time (semi-)norm by
kxk2
f ¼ xTDx: ð12Þ
Singular vectors refer to a singular value decomposition involving the propagator for a fixed time interval
M ” M(t0, t1). The length of the time interval topt = t1 � t0 is referred to as the optimisation time. In order
to account for the norms, we consider linear variable transformations x! C

�1=2
0 x and x! D1/2x. These

transform into spaces in which initial time norm and final time norm are identical to the Euclidean norm.
Now, we consider the singular value decomposition of the propagator that maps between the transformed
spaces
D1=2MC
1=2
0 ¼ eUSeVT: ð13Þ
Here, S is the diagonal matrix containing the decreasing singular values r1 P r2 P � � �P rN. The orthogonal
matrices eU and eV contain the non-dimensional left and right singular vectors as column vectors.

Let us denote by V ¼ C
1=2
0
eV and U ¼ D�1=2 eU the dimensional singular vectors which represent the actual

physical variables like wind and temperature. The transformed right singular vectors V are usually referred to
as initial singular vectors or optimal perturbations (see below). The transformed left singular vectors U are
referred to as normalised evolved singular vectors. The dimensional singular vectors satisfy the following
orthonormality conditions
VTC�1
0 V ¼ I and ð14Þ

UTDU ¼ I; ð15Þ
where I denotes the identity matrix. In dimensional form, the singular value decomposition reads
M ¼ USVTC�1
0 ð16Þ
and the evolved jth singular vector is given by
Mvj ¼ rjuj: ð17Þ

Equation (17) implies that the singular value gives the ratio of the final time norm of the jth singular vector to
its initial time norm
kMvjkf

kvjki

¼ rj: ð18Þ
Singular vectors are also referred to as optimal perturbations because they are optimal in the sense that
they maximise the ratio of final time norm to initial time norm. The leading singular vector v1 identifies
the 1-dim subspace which maximises the ratio of norms. The jth singular vector identifies the 1-dim sub-
space which maximises the ratio of norms in the subspace C�1

0 orthogonal to the space spanned by
v1, . . . ,vj�1.

Now, we consider the decomposition of the forecast error covariance matrix implied by the singular value
decomposition [66]. Let C1 denote the estimate of the forecast error covariance at t1 which is given by (10). The
forecast error covariance matrix in the transformed space in which the final time norm is the Euclidean norm is
given by eC1 � D1=2C1D1=2. Using the singular value decomposition (13), we get
eC1 ¼ eUS2 eUT: ð19Þ

This equation shows that the left singular vectors yield the empirical orthogonal function (EOF) decomposi-
tion of the normalised forecast error covariance estimate eC1. Thus, the leading initial singular vectors evolve
into the leading EOFs of the forecast error covariance estimate.
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4.2.3. Singular vectors in NWP models

The leading singular vectors can be identified approximately by iteratively solving eigenproblems. The non-
dimensional right singular vectors are solutions of the eigenvalue problem
C
1=2
0 MTDMC

1=2
0 ~x ¼ r2~x ð20Þ
and the initial singular vectors are solutions of the generalised eigenvalue problem
MTDMx ¼ r2C�1
0 x: ð21Þ
For simple metrics, i.e. those for which the transformation C
1=2
0 is available, the Lanczos algorithm [67] can be

used to obtain the leading eigenvectors of the symmetric eigenvalue problem (20). Each iteration of the Lanc-
zos algorithm involves an integration of the tangent-linear model and an integration of the adjoint model over
the optimisation interval. For some metrics like the Hessian metric discussed later, the transformation C

1=2
0 is

not available. Then, a generalised Davidson method can be used to iteratively find the leading eigenvectors of
(21) [68,69].

4.2.4. Construction of initial perturbations from singular vectors
In order to construct perturbations of the initial conditions from singular vectors, an assumption has to be

made concerning the distribution of initial errors. Consistent with the choice of the initial time metric in the
singular vector computation, we assume that the initial errors are distributed according to a multi-variate
Gaussian distribution N(0,C0) with zero mean and covariance C0. This assumption appears appropriate in
the absence of more detailed knowledge about the initial uncertainty. If we now consider the error as a ran-
dom vector x having the distribution N(0, C0), we can uniquely decompose x into a component in the space L

spanned by the leading singular vectors and in a component in the space L^ which denotes the C�1
0 -orthogonal

complement of L. Formally, this can be written as
x ¼ PLx|{z}
xL

þ PL?x|ffl{zffl}
xL?

; ð22Þ
where PL and PL? denote the C�1
0 -orthogonal projections on the subspaces L and L^, respectively. The com-

ponents xL and xL? are independent random vectors that are both normally distributed with mean 0 and
covariance PLC0PT

L and PL?C0PT
L?

, respectively. The singular vector based initial perturbation strategy as-
sumes that only the component of the initial errors in the space of the fastest growing perturbations matters.
To remain consistent with the underlying distribution of errors initial perturbations are constructed by sam-
pling from the distribution Nð0;PLC0PT

L Þ.
A sample of this distribution is obtained by linearly combining singular vectors using random numbers aj as

coefficients. Let vj, j = 1, . . . ,M denote a set of leading singular vectors computed with the initial time metric
C�1

0 . Then, the random vector
XM

j¼1

ajvj; ð23Þ
has the distribution Nð0;PLC0PT
L Þ if and only if the coefficients aj are independent normally distributed ran-

dom numbers with zero mean and unit variance. This equivalences hinges on the fact that the singular vectors
form a basis that is orthonormal with respect to C�1

0 , Eq. (15). Special considerations concerning the ortho-
normality of the basis vectors are required if one uses more than one set of singular vectors [70].

A Gaussian distribution does not have compact support and occasionally the coefficients a can become so
large that the resulting perturbations are unphysical. Initial perturbations with very large amplitude can trig-
ger numerical instabilities in the integration. Therefore, it is appropriate to replace the Gaussian by a similar
distribution that has compact support.

When the initial perturbations are based on (23), the sample mean perturbation is almost always not zero
for a finite sample. This makes the ensemble mean in the early forecast ranges worse than an unperturbed fore-
cast starting from the best estimate of the initial state. The sample mean perturbation can be forced to be zero
by modifying the sampling approach. A particularly attractive way to achieve this is to enforce a plus-minus
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symmetry in the sample of initial perturbations. In this approach, pairs of perturbations (x+, x�) are generated
by sampling the coefficients a for x+ and setting x� = � x+. This method is motivated by the fact that the sign
of a singular vector is arbitrary. Using the plus-minus symmetric sampling, the univariate sample distributions
in the direction of any singular vector are invariant under the operation of changing the sign of the singular
vector. Furthermore, the sample estimates of any odd moment vanishes. For the plain Gaussian sampling (23)
this is only achieved in the limit of infinite ensemble size. Note, that there could be a potential problem with
plus-minus symmetric perturbations if the ensemble is used to estimate a covariance matrix without using
covariance localisation. In the linear regime of perturbation dynamics, using plus-minus symmetric perturba-
tions effectively halves the rank of an already rank-deficient covariance matrix estimate. For the Ensemble
Transform Kalman Filter, a spherical simplex method was shown to be superior to plus-minus symmetric per-
turbations [71].

In practice, only a crude estimate of C0 is used in the singular vector computation. Therefore the standard
deviation of the sampled Gaussian distribution is a parameter that needs to be determined empirically in order
to obtain an adequate dispersion of the ensemble.

4.3. Initial perturbations in the operational ECMWF EPS

Now, we summarise the configuration used for the initial perturbations in the ECMWF EPS. Singular vec-
tors are computed with an initial time norm and final time norm which is referred to as total energy metric.
The squared norm is given by the spatially discretised version of the following integral
1

2

Z p1

p0

Z
S

u2 þ v2 þ cp

T r

T 2

� �
dp dsþ 1

2
RdT rpr

Z
S
ðln psfcÞ

2ds: ð24Þ
Here, u, v, T, lnpsfc refer to the perturbations of the zonal and meridional wind component, the temperature
and logarithm of surface pressure. Furthermore, Rd, cp, Tr, pr denote the gas constant and the specific heat at
constant pressure of dry air and a reference temperature and pressure, respectively. The integration extends
over the entire volume of the model atmosphere with

R
S ds and

R p1

p0
dp denoting horizontal integration over

the surface of the sphere and vertical integration using pressure p as coordinate.
This metric has the advantage that it corresponds to a diagonal matrix in the model state space and thus

permits the reduction to an ordinary eigenproblem (20). In [65], the authors compare singular vectors com-
puted with several different simple initial norms. The study shows that total energy is the best of the limited
number of considered initial norms in terms of the consistency of the spectral distribution of variance of sin-
gular vectors and analysis error estimates.

The singular vectors are optimised for maximum growth over a 48-h period. This choice is motivated by
two aspects: First, the optimisation time has to be sufficiently small for the linearisation to provide a good
approximation of the dynamics of perturbations of the nonlinear forecast model that have an initial amplitude
of typical analysis errors. Second, the optimisation time should be sufficiently long in order to obtain pertur-
bations that grow rapidly enough in the later forecast ranges.

The expansion into spherical harmonics of the tangent-linear model is truncated at a total wavenumber of
42; this corresponds to a horizontal resolution of about 300 km. The tangent-linear model is linearised about a
trajectory which is initialised from a short-range forecast (6-h). The resulting singular vectors are very similar
to ones obtained with a trajectory started from the latest analysis. Hence, the choice of the trajectory in the
singular vector computation does not affect the ensemble skill [72]. The benefit of using a slightly less accurate
trajectory for the linearisation is that more computing resources can be devoted to the singular vector com-
putation and to the nonlinear forecasts in an operational weather prediction context.

Separate sets of singular vectors are computed for each hemisphere. Singular vectors for a specific region
are obtained by replacing the propagator M in (20) with PM, where P denotes a projection of the perturbation
to the region of interest. In the hemispheric computations, the evolved perturbations are localised to the extra-
tropics of the respective hemisphere (30�–90� latitude). The amplification rates of the leading singular vectors
for a particular hemisphere exhibit a seasonal cycle with the largest growth occurring during the dynamically
more active winter [14]. Without localisation, the majority of singular vectors would be located in the winter
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hemisphere. By computing separate sets of singular vectors, equally many singular vectors can be obtained for
each hemisphere.

The initial perturbations for the extra-tropics are based on initial singular vectors and on 48-h linearly
evolved singular vectors computed 48-h prior to the ensemble start time. The component of initial perturba-
tions based on the evolved singular vectors has been introduced to represent the slower growing large-scale
component of initial condition errors [73]. The evolved singular vectors are normalised using the total energy
norm prior to being used in the Gaussian sampling. The normalisation makes the perturbations consistent
with the representation of initial uncertainty implied by the total energy metric. Without normalisation the
initial spread of the ensemble would exhibit a few large maxima that correspond to the fastest growing evolved
singular vectors. For each hemisphere, extra-tropical initial perturbations are constructed from the leading 50
initial singular vectors and the leading 50 evolved singular vectors. Experimentation using fewer and using
more extra-tropical singular vectors suggests that the skill of probabilistic predictions increases with increasing
number of extra-tropical singular vectors up to about 50. We expect that the number of singular vectors
beyond which the probabilistic skill does not improve significantly depends on the tangent-linear dynamics
and the particular singular vector configuration, i.e. optimisation time and optimisation region. In the
extra-tropical singular vector computation, the tangent-linear model used is simplified and does not contain
parameterisations of physical processes apart from a simplified scheme for vertical mixing and surface friction
[74].

The dynamics of perturbations in the tropics is sensitive to the representation of diabatic physics. Simplified
versions of the nonlinear physical parameterisations of diabatic processes and their tangent-linear and adjoint
models have been developed in [58]. Singular vectors optimised for the entire tropics with this simplified rep-
resentation of diabatic processes in the tangent-linear model tend to exhibit spurious growth, i.e. the tangent-
linear model grossly overestimated the growth of these structures in the nonlinear model [75]. Therefore, per-
turbations for the tropics have been limited to perturbations in the vicinity of tropical cyclones [76]. In order
to obtain structures to which the evolution of the tropical cyclone is sensitive, it is necessary to localise the final
time norm to the vicinity of the tropical cyclone. The leading five singular vectors are computed for each opti-
misation region targeted on a tropical cyclone. It has been shown that these perturbations are effective in gen-
erating spread among the tropical cyclone tracks in the ensemble (Fig. 3, [76]). A computation of these initial
perturbations is triggered whenever a report of the presence of a tropical cyclone is received. The optimisation
region for the tropical cyclone takes into account its likely position at optimisation time based on tracks from
the previous ensemble forecast if available. During a transition of a tropical cyclone into the extra-tropics, the
optimisation region will move into the optimisation region used for the extra-tropical singular vector compu-
tation. In order to avoid that the computation of perturbations for the tropical cyclone duplicates structures
already represented in the extra-tropical set of singular vectors, the computation is restricted to the subspace
orthogonal to the 50 leading extra-tropical singular vectors [70]. This approach permits statistically consistent
initial perturbations even for overlapping optimisation regions.

The initial perturbations are obtained from the singular vectors via the pairwise symmetric Gaussian sam-
pling method described in the previous section. Originally, singular vectors were combined via a selection and
rotation algorithm [77]. The Gaussian distribution is truncated at ±3 standard deviations to avoid excessively
large amplitude perturbations that could trigger numerical instabilities. The scaling of the width of the Gauss-
ian distribution is performed independently for each set of singular vectors. The singular vectors are compared
with an estimate of the analysis error standard deviation provided by the four-dimensional variational assim-
ilation system using an analysis error variance norm defined as L2-norm of the perturbation scaled by the esti-
mate of the analysis error standard deviation. The summation in the norm extends over the entire model grid
and involves the horizontal wind components, temperature and the logarithm of surface pressure, i.e. the vari-
ables defining the a dry model state in grid point space. The standard deviation of the Gaussian for a set of
singular vectors is set to
b ¼ c=�j; ð25Þ

where �j denotes the average analysis error variance norm for the set of singular vectors. The parameter c is
determined empirically to yield adequate ensemble dispersion. Presently, the EPS uses c = 0.020 for the extra-
tropical singular vectors and c = 0.030 for the singular vectors targeted on tropical cyclones. In the current
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system, the value of the average norm �j does not vary much from day to day and the standard deviation b is
basically set by the empirically determined scaling factor. However, in principle b could react to changes in the
analysis uncertainty, say if several sources of observational data became unavailable suddenly and the analysis
error estimate reflected this change. Fig. 7 shows four realisations of initial condition perturbations in the mid-
latitudes. One can distinguish perturbations with the typical westward tilt that is familiar of initial singular
vectors and the broader and deeper structures of the evolved singular vectors. The standard deviation of
the temperature perturbations is typically of the order of about 0.5 K with peak values of about 2 K in the
dynamically most active regions. The 4D-Var estimate of the temperature analysis error is spatially more
homogeneous. Values of the standard deviation are in a similar range of about 0.5–2 K in the mid-latitudes.

4.4. Discussion

The initial perturbation methodology of the ECMWF has evolved over the years and is likely to evolve
further as our knowledge about the sources of uncertainty grows and as new opportunities emerge through
improved numerical algorithms and increases in computing power. What are then promising directions of fur-
ther improving the EPS initial perturbations?

The tangent-linear model used in the computation of extra-tropical singular vectors of the ECMWF EPS is
only representing perturbation dynamics of the adiabatic part of the model apart from vertical mixing and
surface drag. The impact of representing diabatic processes in the tangent-linear model on the structure
and growth rate of extra-tropical singular vectors has been studied in [78] using the parameterisations devel-
oped in [58]. They identified that mainly due to the representation of the large-scale, i.e. resolved, condensa-
tion in the tangent-linear model the singular vectors become smaller scale and tend to grow faster. In order to
resolve the smaller scales, it appears necessary to increase the horizontal resolution in the singular vector com-
putation. At the same time, [78] recommend to shorten the optimisation time from 48 h to 24 h in order to
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Fig. 7. Temperature (every 0.2 K, negative values dashed, positive values solid, heavy contour every 1 K) in a vertical section at 50�N for
four realisations of initial condition perturbations corresponding to perturbed forecasts 1, 2, 5 and 50 (from top to bottom) of the
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remain in a regime in which the tangent-linear approximation is sufficiently accurate given increased growth
rates and smaller spatial scales. Such a singular vector configuration has been tested in the EPS showing posi-
tive results for the prediction of some intense extra-tropical cyclones at forecast ranges of about 2 days [79].
However, overall, the shortening of the optimisation time has a slightly detrimental impact on the skill of
probabilistic forecasts in the present EPS configuration. Recently, more accurate tangent-linear schemes have
been developed for the large-scale condensation and the parameterised convection [59,60]. Their use for com-
puting singular vectors for the EPS is being explored.

The singular vectors in the ECMWF EPS are computed with a total energy metric at initial time which is a
rather crude representation of the initial condition uncertainty. For instance, it does not account for spatial
and temporal variations in initial uncertainty. It is possible to use more sophisticated estimates of the initial
uncertainty in the initial norm of the singular vector computation. Estimates of the inverse initial error covari-
ance matrix can be obtained from the Hessian of the cost function of variational assimilation algorithms. It is
possible to compute singular vectors with the Hessian as initial time metric by solving the generalised eigen-
problem (21) [69]. These singular vectors are referred to as Hessian singular vectors. Initial uncertainty esti-
mates based on the Hessian are consistent with the statistical assumptions made in that variational
assimilation algorithm. Earlier work comparing singular vectors computed with the Hessian of a 3D-Var cost
function as initial time metric concluded that the Hessian singular vectors had generally larger scale structures
than the singular vectors computed with the total energy metric [73]. Work with a more recent version of the
ECMWF data assimilation system (4D-Var and use of revised background error covariances with spatially
more confined correlations) results in Hessian singular vectors that are more similar compared to total energy
singular vectors in terms of their spatial scales and the baroclinic tilt against the vertical shear of the flow [80].
Fig. 8 shows an example of the leading singular vector computed with three different initial time metrics: total
energy, Hessian metric, and a partial Hessian metric that does not include the observation term of the cost
function. While the former Hessian metric provides an analysis error covariance metric, the latter provides
a background error covariance metric. The singular vectors computed with the background error covariance
metric are deeper and of larger horizontal scale than the singular vectors computed with analysis error covari-
ance metric or the singular vectors computed with the total energy metric. Both the earlier 3D-Var Hessian
singular vectors and the more recent 4D-Var Hessian singular vectors were tried as initial perturbation in
the EPS. They did not improve the skill of the probabilistic forecasts compared to an EPS using singular vec-
tors computed with the total energy metric [73,80]. The degree of similarity between the more recent 4D-Var
Hessian singular vectors and the total energy singular vectors suggests that there is little scope for improve-
ment. The Hessian singular vector computations use a static specification of the background error covariance.
This may severely limit the ability to describe flow-dependent variations of initial uncertainty. In a recent pub-
lication [81], singular vectors computed with a flow-dependent analysis error covariance metric are presented.
The covariance was estimated from the analyses of an ensemble Kalman filter. Given improved estimates of
the initial error distribution, it will be necessary to reassess the benefit of dynamically constrained sampling of
this distribution compared to an unconstrained sampling.
Fig. 8. Temperature perturbation (every 0.01 K, positive: black, negative: grey, zero contour omitted) in vertical section at 50�N of leading
singular vector computed with different initial metrics: (a) total energy, (b) Hessian of 4D-Var cost function and (c) Hessian of background
part of 4D-Var cost function.
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5. Representation of model error

The laws of evolution which govern weather and climate, at least their physical aspects, are well known, and
are accurately represented by sets of partial differential equations. These equations nonlinearly couple circu-
lations with different scales and are thus difficult to solve analytically. To solve the governing equations
numerically, we project them onto some chosen orthonormal basis, thus determining a set of (up to 108) cou-
pled ordinary differential equations. Within these equations, the nonlinear effect of unresolved scales of
motion are traditionally represented by simplified deterministic formulae, known as parametrisations. These
parametrisations represent the bulk effect of subgrid processes within a grid box, and are justified in much the
same way diffusive formulae are justified in statistical mechanics. Hence, for example, parametrisation of deep
convection presumes the existence of an ensemble of deep convective plumes, in quasi-equilibrium with the
larger scale environment. The associated parametrised convective tendency represents the bulk effect of these
plumes in redistributing heat, momentum and water in the vertical column of a given grid box. Similarly, para-
metrisation of orographic gravity-wave drag presumes the existence of an ensemble of incoherent gravity
waves which collectively are associated with a flux of momentum from the surface to some level of presumed
wave breaking.

Parametrisations are by their nature approximations. Hence the parametrised convective or orographic ten-
dencies, which represent the mean effect of these processes over many realisations, are usually different from
the tendencies associated with the actual convective or orographic subgrid flow. Since the latter is not known,
the parametrisation process is necessarily a source of uncertainty in numerical forecasts, and must therefore be
represented explicitly in any ensemble forecast system. Without such a source of uncertainty either the ensem-
ble will be under dispersive, or other sources of error, e.g. associated with observational uncertainty, will have
to be inflated to prevent under dispersion. In this context, we note again that since the forecast model is used
to assimilate observations in creating the initial conditions for a forecast, initial error includes a component
due to model error. That is to say, when one speaks of forecast uncertainty as comprising initial error and
model error, these two classes of error are not disjoint.

There are currently three general methods for representing model error: the multi-model ensemble, the per-
turbed parameter ensemble, and stochastic-dynamic parametrization. These different techniques have been
discussed and compared in a recent comprehensive review [82] – here we give a brief overview.

The efficacy of the multi-model ensemble relies on the fact that models from different institutes around the
world have been developed quasi-independently. Hence, within a multi-model ensemble there will typically be
a set of quite different convection schemes, orographic drag schemes, and numerical approaches. Multi-model
seasonal-timescale ensemble forecasts have been shown to be more reliable than single model ensembles, par-
ticularly in the tropics [31].

In a multi-model ensemble forecast system, the size of the ensemble is limited by the number of available
models, typically on the order of 10. In order to create large ensembles, the perturbed parameter approach
[83,84] has been developed. In this methodology, individual uncertain parameters within the set of paramet-
risations of a single specific model are perturbed according to some estimates of parameter uncertainty. Hence,
for example, elements of the ensemble could be run with the standard value of the convective entrainment
parameter tripled. So far, most examples of perturbed parameter ensembles have been made in the context
of climate change. In [85], the authors discuss the use of very short-range forecast tendencies to constrain per-
turbed parameter ensembles.

The multi-model ensemble assumes that on any given occasion, at least one of the multi-model parametri-
sations is capable of giving the correct grid-box mean tendency. In the perturbed parameter ensemble, it is
assumed that the correct tendency can be obtained by a suitable parameter perturbation of a given paramet-
risation. The stochastic-dynamic parametrisation approach [86] does not assume that the correct tendency can
be given by a deterministic bulk formula. Indeed, in the stochastic-dynamic approach it is assumed that the
assumption of an ensemble of subgrid processes at any time-step and for any grid box, is a flawed assumption.
For example, in particularly active regions of convection a given grid box may be dominated by a single meso-
scale convective complex, the very antithesis of the ensemble plume model. In the stochastic-dynamic
approach, a specific realisation of the stochastic process is associated with a single specific realisation of
the subgrid circulations.
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A simple stochastic parametrisation has been discussed in [57], where it is shown that probabilistic forecast
scores are improved by including such a scheme in the ensemble forecast system. This scheme is presently used
to represent model uncertainty in the operational ECMWF EPS. A more sophisticated scheme based on the
idea of backscattering of kinetic energy dissipated by the model [87] has been shown to be capable of amelio-
rating some of the more robust systematic errors in climate models associated with mid-latitude blocking [88].
The spatio-temporal forcing pattern in one version of this scheme is based on stochastic-dynamic cellular
automata; in another version it is based on a spectral Markov process.

At present no comparative studies of these three techniques for representing model uncertainty have been
performed. However, under the European Union project ENSEMBLES, a detailed comparison will be under-
taken in seasonal and decadal forecast mode.

The representation of model uncertainty is still at a rudimentary stage of development. One technique
which may prove useful in developing stochastic parametrisations is the method of coarse-grained budgets
from cloud-resolving models. Early results in this direction [89] lend support to the simple stochastic scheme
proposed in [57].

6. Conclusions

As emphasised many years ago by Tennekes et al. [90], a prediction of the likely error of a weather forecast
is as important as a prediction of any particular meteorological variable; predicting predictability is as impor-
tant as predicting rainfall. However, because the atmosphere is a nonlinear dynamical system, the likely error
of a weather forecast varies from initial state to initial state. That is to say, the growth of inevitable uncertain-
ties and errors in making a weather forecast is flow dependent. Ensemble forecast systems have been developed
to estimate such flow-dependent estimates of forecast uncertainty. In this paper we have focused on the devel-
opment of the ECMWF medium-range ensemble prediction system, now operational for 15 years.

The inevitable uncertainties and errors that degrade the potential skill of a weather forecast include uncer-
tainties in the observations, used to initialise the predictions, and in the forecast models themselves. These
sources of error are not disjoint; for example, errors interpolating from point or pixel-scale observations to
grid-point fields arise because of the finite truncation scale of the forecast model. Indeed, there remains con-
siderable uncertainty in how to specify the statistical properties of the errors in observations and in the fore-
cast model. For the former, there are issues associated with the spatio-temporal correlation of observation
error from space-based platforms. For the models, the nature and upscale propagation of parametrisation
error onto the resolved flow is still not well understood theoretically.

For these reasons we have discussed the different types of philosophy underlying perturbation strategies in
ensemble prediction: those which develop perturbations within a framework where the statistical properties of
uncertainty are assumed known, and those where such statistical properties are themselves uncertain and
where conventional estimates are too conservative (leading to under-dispersive ensembles). The singular-vec-
tor strategy, used at ECMWF and discussed in this paper, lies within the latter type of approach. However, in
the future, as more sophisticated methods to represent observation and model uncertainty are developed it
may be possible to develop perturbation strategies, e.g. based on ensemble data assimilation techniques, from
a given statistical estimate of uncertainty.

Ensemble prediction systems generate probability forecasts and a variety of methods are available to assess
the skill of such probability forecasts, some of which are discussed in this paper. However, the real value of
ensemble prediction systems are not the probability forecasts per se, but their ability to influence decisions
across a range of applications sectors. A general methodology of how a reliable ensemble prediction system
can be more valuable for decision making than a corresponding best-guess deterministic forecast was dis-
cussed. However, as operational ensemble prediction continues to develop, so specific examples of the value
of ensemble prediction for decision making will increase. Such specific examples will most likely arise when a
specific application model is coupled to each individual member of the ensemble prediction system. In this
way, weather becomes an intermediate variable in the prediction system and a probabilistic forecast of the rel-
evant user variable becomes the primary output from the ensemble. In order for such end-to-end systems to
become viable in an operational context, it will be important for sufficient calibration runs to be made before
any new operational system can be implemented.
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Ensemble forecasting has now become an established technique in medium-range prediction, having been
operational for 15 years. However, ensemble prediction systems have now been developed on almost all time-
scales, from nowcasting to climate change. Both meteorologists, and users of meteorological forecasts, now
recognise that, no matter what the timescale of interest, there is little merit in producing forecasts without also
producing corresponding forecasts of likely accuracy.
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